Curvature Estimates for Minimal Submanifolds of Higher Codimension

نویسنده

  • LING YANG
چکیده

We derive curvature estimates for minimal submanifolds in Euclidean space for arbitrary dimension and codimension via Gauss map. Thus, SchoenSimon-Yau’s results and Ecker-Huisken’s results are generalized to higher codimension. In this way we improve Hildebrandt-Jost-Widman’s result for the Bernstein type theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Mean Curvature Flow Smoothes Lipschitz Submanifolds

The mean curvature flow is the gradient flow of volume functionals on the space of submanifolds. We prove a fundamental regularity result of mean curvature flow in this paper: a Lipschitz submanifold with small local Lipschitz norm becomes smooth instantly along the mean curvature flow. This generalizes the regularity theorem of Ecker and Huisken for Lipschitz hypersurfaces. In particular, any ...

متن کامل

RICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM

Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...

متن کامل

Mean Curvature Flow of Pinched Submanifolds to Spheres

The evolution of hypersurfaces by their mean curvature has been studied by many authors since the appearance of Gerhard Huisken’s seminal paper [Hu1]. More recently, mean curvature flow of higher codimension submanifolds has also received attention. In this paper we prove a result analogous to that of [Hu1] for submanifolds of any codimension. Let F0 : Σn → Rn+k be a smooth immersion of a compa...

متن کامل

Minkowski Formulae and Alexandrov Theorems in Spacetime

The classical Minkowski formula is extended to spacelike codimension-two submanifolds in spacetimes which admit “hidden symmetry” from conformal KillingYano two-forms. As an application, we obtain an Alexandrov type theorem for spacelike codimension-two submanifolds in a static spherically symmetric spacetime: a codimensiontwo submanifold with constant normalized null expansion (null mean curva...

متن کامل

S ep 2 01 4 MINKOWSKI FORMULAE AND ALEXANDROV THEOREMS IN SPACETIME

The classical Minkowski formula is extended to spacelike codimension-two submanifolds in spacetimes which admit “hidden symmetry” from conformal KillingYano two-forms. As an application, we obtain an Alexandrov type theorem for spacelike codimension-two submanifolds in a static spherically symmetric spacetime: a codimensiontwo submanifold with constant normalized null expansion (null mean curva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008